Creation of new jobs and creativity of the urban space

Over the last decades industries, that affect human capital development, have stepped into the spotlight. Engineering companies, creative and service enterprises have assumed a crucial role in the urban economy and its potential. As for large urban agglomerations, new forms of production and creative class mobilization represent the key objectives due to the reduction or liquidation of the majority of industrial urban enterprises.

Urban planning as a science is responsive to economic changes. The paradigm of functional zoning has been replaced by theories based on land use intensity, business and cultural activities of population. Hence, the idea is to ensure the polyfunctional operation of industrial, high-tech research companies in residential areas and to relocate housing to areas occupied by old industrial enterprises.

In this work, the co-authors analyze the phenomenon of the location value in a modern city, regularities that govern the choice of locations for new enterprises; they also suggest approaches to the zoning of urban areas depending on their potential ability to develop new types of industrial production.

Keywords: surveying, value of a territory, zoning, urban and regional clusters

THE VALUE OF AN URBAN AREA

In the surveying system, the understanding of processes of territorial, spatial and economic development of cities intrinsically encompasses the analysis, design, examination, and management of the urban environment (UE) and items of real estate as its constituents [1].

Most of the researchers believe that the set of tasks, related to the life cycle of a construction facility in time and space, depends on multiple factors: from the value and function of a facility to the assessment of its location, area, and a number of subjective factors. In the surveying system, this set of tasks is clustered into the concept of urban planning: identifying the most suitable conditions for the best, the most effective solution that encompasses the composition or decomposition of the key elements of form, function, and structure of an urban space. Each time the life cycle of a construction facility is identified with the properties of a construction facility. Each time the life cycle of a construction facility is identified with the properties of a construction facility. Each time the life cycle of a construction facility is identified with the properties of a construction facility.

Understanding the surveying system as a general theoretical approach allows to make decisions at the most important project stages, starting from the general layout plan and masterplan and ending with construction and operation.

The city demonstrates regression to the Middle Ages: “cities were founded in marketplaces only”, where production reached consumers. Not all fortresses developed into cities, but only those whose location, or urban land, was valuable.

In a modern city, innovations are drivers of valuation differences. As a rule, innovations emerge at the intersection of science, education and business.

Urban land, or “localities” have different characteristics and different values. This concept serves as the basis for a fundamental research into characteristics and functions, that determine the value of a locality, an urban agglomeration and the entire life cycle of a construction facility.

Over the recent decade of the 21st century, the theoretical concept of urban space and its value has served as the basis of continuing research.

A well-known formulation that reads as "A HOUSE or A ROAD", which is the simplest metaphoric characteristic describing the origin of an item of real estate, will remain a permanent determinant that identifies the properties of a construction facility.

If the road takes the shape of a river, the road dominates, and if the road occupies the space left in-between the houses and its shape is almost unpredictable, it is nothing more than a mere function.

In the course of centuries, it accumulated numerous functions. And then comes the stage of its valuation through surveying that deals with economy or an economic problem. It is not a simple one, since it deals with the price rather than the value. Surveying encompasses examination, organization, valuation, economics, and operation. [2]

THE RELEVANCE

The problem of siting urban working spaces is truly acute. If in the 20th century 80 % of the population was engaged in the production of industrial goods and agricultural products, in the 21st century mere 20 % of the population is employed in the industrial sector [3]. Now that the majority of urban residents is engaged in unproductive labour, opportunities open up for the “creative class” [4, 5].
The creative class is understood as workers engaged in mental work: engineers, software developers, architects, designers, artists, economists, lawyers, medical professionals, educators, athletes. The creative class personifies new growing industries. Therefore, cities that have many representatives of creative industries, develop faster, as they have considerable resources (Fig. 1).

The formation of post-industrial development patterns gave rise to new types of industrial process organization, namely, territorial and industrial clusters, or simply clusters [6].

A cluster is a geostatistical notion. Depending on the scope of research, which may be performed on regional or urban levels, clusters can mean the key industries in a particular region that have competitive advantages, consolidated industry-specific activities in a city, or development enclaves in an urban environment [7].

THE PROBLEM

In Moscow, the key objective is to create new forms of production and attract the creative class due to the reduction or liquidation of major urban industrial enterprises. Moscow is known to have 18.8 thousand hectares of production areas, which occupy approximately 17% of the urban land within the city boundaries of 2012. The major part of the territory of production areas will be renovated, and the function of these territories will be altered in full or in part. According to the plan, only 7.5 thousand hectares of production areas will accommodate more intensive production activities. Conditions are in place to ensure the double functionality of these territories that will be shared by residents and the business community.

The Moscow City Government supports production activities and new industries. This support is provided in the form of subsidized incorporation of industrial complexes, science parks and industrial parks [8].

The problem is that the present-day industrial policy, pursued by the urban authorities, keeps turning a blind eye to the urban planning context. The development of industrial areas is declarative, and formal project requirements ignore social, economic, ecological, transport, and cultural factors of the environment that will accommodate a future industrial facility.

THE PROPOSED SOLUTION

There is a need to draft the methodological approaches that apply to the location and integration of new types of industrial production facilities into the urban environment.

There is a need to solve the following problems using methods of logic, mathematics and statistics:

• analyze spatial patterns of arrangement of clustered structures, optimal combinations and advantages of technology intensive clustered structures;
• develop an urban land zoning algorithm based on the growth potential of promising industrial sectors (primary task);
• develop an algorithm designated for the measurement of performance of new research and production facilities (secondary task) [6].

Urban land zoning based on the growth potential of promising industrial sectors involves:

![Fig. 1. Singapore clusters](image)
1. Identifying the industries that serve as drivers of the urban economy;
2. Assessing the availability of clusters at the urban level;
3. Assessing cross-sectoral links;
4. Analyzing spatial regularities that govern the siting of promising industries;
5. Ranking competing areas based on the cluster potential and transport infrastructure development.

This stage should result in the draft map of urban zones of the cluster potential and a ranked list of competing urban sites.

Identifying the industries that serve as drivers of the urban economy

We used the Central Statistical Database of the Federal State Statistics Service of the Russian Federation to find out the number of employees broken down by the economic activities [9].

This statistical information serves as the basis for calculating three quantitative indicators [10–12]:
- LQ (specialization): this indicator shows how the weight of a cluster in a region exceeds the weight of a given industry on a national scale.
- Size: the ratio of the number of employees in a given regional cluster to the number of people employed in the industry on a national scale.
- Focus: the ratio of the number of employees in a given regional cluster to the overall employment in the region.

Having performed the calculation of quantitative indicators and grouping, we obtained five key creative clusters, including research and education, IT, tool engineering, media, pharmaceutics and new chemistry (see Table 1).

Table 1. Creative clusters in Moscow

<table>
<thead>
<tr>
<th>Cluster name</th>
<th>Number of jobs</th>
<th>LQ</th>
<th>Size, %</th>
<th>Focus, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Media</td>
<td>85,739</td>
<td>3.4</td>
<td>28</td>
<td>2</td>
</tr>
<tr>
<td>IT</td>
<td>203,819</td>
<td>1.1</td>
<td>1.1</td>
<td>18</td>
</tr>
<tr>
<td>Tool engineering and mechanical engineering</td>
<td>114,292</td>
<td>1.4</td>
<td>1.4</td>
<td>8</td>
</tr>
<tr>
<td>Research and education</td>
<td>402,661</td>
<td>2.9</td>
<td>2.9</td>
<td>25</td>
</tr>
<tr>
<td>Pharmaceutics and new chemistry</td>
<td>12,673</td>
<td>1.2</td>
<td>12</td>
<td>0</td>
</tr>
</tbody>
</table>

Fig. 2. Distribution of technology companies by districts of Moscow within the Moscow Ring Road (left), taking into account the spatial lag (smoothing) (right)

Clustering new industries at the urban level

Spatial autocorrelation is applied to identify the presence or absence of clustering. Spatial autocorrelation [13] is a measure of spatial dependence, association or correlation between the analyzed values that apply to the same attribute of adjacent spatial facilities (Fig. 2).

Global spatial autocorrelation is typically calculated as Moran’s I index. It is interpreted subject to the anticipated value calculated using the null hypothesis about the absence of spatial autocorrelation (complete spatial randomness).

In case of random distribution, the anticipated value of Moran’s I Index tends towards 0. Positive (observed) Moran’s I Index values, that significantly exceed the anticipated value, indicate clustering and positive spatial autocorrelation (i.e., adjacent localities have similar values of the attribute). Negative (observed) Moran’s I Index (Fig. 3) values that are much smaller than the anticipated value, indicate negative spatial autocorrelation (i.e., adjacent localities have widely varying values of the attribute). Moran’s I Index values, that are close to the anticipated value, indicate the absence of autocorrelation.

In this case, Moran’s I index (0.44) differs significantly from the random distribution. We can observe concentration and sparseness of high-tech companies within the Moscow Ring Road.

Assessing cross-sectoral links

A graph of relatedness of industries was made on the basis of statistical information about the collocation of companies. There,
the node size characterized the number of companies in a particular industry, and the arc size characterized the number of companies that had cross-sectoral links (Fig. 4).

Principal Moscow high-tech industries include the tool industry and mechanical engineering, biotechnology, IT, and the chemical industry. These industries demonstrate high compatibility, if they share premises.

Evaluating the siting patterns of promising industries

In the context of this research, it is vital to understand how new companies interact with other objects in the urban environment, including the supporting infrastructure (universities, research centres, science parks) (Fig. 5), old industrial zones, the ecological situation, points of attraction, and transport [14].

The study shows that high-tech companies demonstrate concentration patterns similar to those of other urban points of interest. Many companies are concentrated near science parks and creative spaces. We have identified that new companies are concentrated at a distance from old industrial zones. New companies do not affect the environmental situation (Table 2).

Ranking competing areas by their cluster potential and transport infrastructure development

Moscow industrial zones, which can be exposed to renovation, are assumed as optional territories that can accommodate new clusters. Sixty existing industrial zones have been selected.
Core attributes were identified for each industrial zone, and the following factors were formulated on their basis: transport accessibility, the number of corporate participants, social security offices, leisure and cultural institutions, ecology [5].

A site scoring model can be used to rank industrial areas:

\[
Q = \sum_{j=1}^{m} \frac{Q_i}{\eta_j} w_j,
\]

where \(Q_i\) is the score of the \(i\)-th indicator of the \(j\)-th criterion; \(\eta_j\) is the number of indicators of the \(j\)-th criterion; \(w_j\) is the weight of the \(j\)-th criterion; \(m\) is the number of criteria; \(i\) is the performance measure of the \(j\)-th criterion; \(j\) is the criterion.

For ranking purposes, an assessment based on the following set of criteria was applied:

- **The transport criterion** is characterized by the position of the area within the urban structure and the extent of development of the transport infrastructure, including the road network density, the number of public transport stations, and the availability of places of residence.

- **The research/production criterion** is characterized by the availability of clustered industries, science parks, creative spaces, co-working spaces, educational institutions, and R&D organizations.

- **The recreation criterion** is characterized by the location of cultural, leisure, social facilities.

- **The landscape/composition criterion** is characterized by the location of historical buildings, visual connection with the city centre and architectural ensembles, and the extent of the natural landscape preservation.

- **The environmental criterion** is characterized by the environmental situation in the territory and the presence of hazardous industries.

These criteria are not assessed by experts; they are calculated using quantitative data that have a spatial reference. The advantage of using geoinformation data consists in the ability to simultaneously co-evaluate a large number of alternatives without having any experts involved. An expert opinion is only needed to determine the weight of the criteria (Fig. 6).

Given the zoning results, Sokolnaya Gora and Kalibr industrial zones are the most attractive locations for new clusters (Fig. 7). They can accommodate new science parks or existing ones. The choice of a science park as the type of location for new production facilities is based on the current extent of development of industrial zones, the size of land plots and effective urban planning standards.

<table>
<thead>
<tr>
<th>Urban environment</th>
<th>Spatial location correlation, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Universities, science parks, creative spaces</td>
<td>80</td>
</tr>
<tr>
<td>Industrial zones</td>
<td>10</td>
</tr>
<tr>
<td>Ecology</td>
<td>5</td>
</tr>
<tr>
<td>Points of interest</td>
<td>96</td>
</tr>
<tr>
<td>Transport accessibility</td>
<td>83</td>
</tr>
</tbody>
</table>

Table 2. Spatial interaction between new industries and elements of the urban environment

Fig. 5. Collocation of urban areas demonstrating most intensive economic activities and innovative infrastructure in Moscow: technical universities (orange squares), science parks (light green squares), co-working spaces (white dots)
Although the above approach allows classifying or zoning urban territories into high, medium and low potential areas in terms of the location of cluster companies, it does not allow for the scientifically grounded distribution of jobs.

Fig. 6. Urban territory zoning according to the cluster potential: the darker the zone, the higher the potential

The distribution of jobs in the city can be regarded as a global optimization problem. Basic prerequisites that underlie the algorithm include:

1. Maximization of the multi-criterial assessment of a location: a designer should be able to flexibly choose optimal location criteria;

Fig. 7. Sokolinaya Gora industrial zone
Создание новых рабочих мест и креативность городского пространства

В последние десятилетия на первый план вышли отрасли, связанные с развитием человеческого капитала. Инновационные компании, предприятия креативных индустрий и сферы услуг стали играть определяющую роль в экономике города, его экономическом потенциале. Для городских крупных агломераций размещение новых форм производства, привлечение креативного класса является ключевой задачей ввиду сокращения или ликвидации большинства промышленных предприятий города.

Вместе с экономическими изменениями меняется и градостроительная наука. На смену парадигме функционального зонирования пришли теории, основанные на признаках интенсивности использования территории, деловой и культурной активности населения. Появилась идея полифункционального размещения производственных, научных высокотехнологичных компаний в жилых зонах и жилых на территории исторически сложившихся промышленных предприятий.

В данной работе авторы анализируют феномен ценности мест в современном городе, закономерности размещения новых предприятий, а также предлагают подходы к зонированию территории города по потенциалу развития новых видов промышленного производства.

Ключевые слова: сервейинг, ценность территории, зонирование, городские и региональные кластеры

ЛИТЕРАТУРА

REFERENCES

5. Флорида Р. Креативный класс. Люди, которые создают буду-
ящее / пер. с англ. Н. Яцюк. М.: Манн, Иванов и Фербер, 2016. с. 22.
6. Mercedes D., Porter M.E., Stern S. Defining clusters of related
Pp. 1–38. DOI: 10.1093/jeg/btv017
7. Ассоциация инновационных регионов России. Мониторинг
региональных кластерных политик. URL: http://www.edu.i-
regions.org/upload/monitoringponyatieobzor.pdf (дата обраще-
ния 01.04.2021).
8. Об авторах:
Павлова Лия Иосифовна — кандидат техниче-
sких наук, профессор кафедры организации строительства
и управления недвижимостью; Национальный исследова-
tельский Московский государственный строительный уни-
верситет (НИУ МГСУ); 129337, г. Москва, Ярославское шоссе,
d. 26; РИНЦ ID: 587839; liell@ya.ru;
Белов Артем Сергеевич — соискатель кафедры организации
строительства и управления недвижимостью; Национальный
исследовательский Московский государственный строи-
tельный университет (НИУ МГСУ); 129337, г. Москва, Яро-
sлавское шоссе, д. 26; mr.belov.as@ya.ru.
For citation: Pavlova L.I., Belov A.S. Creation of new jobs and cre-
ativity of the urban space. Real estate: economics, management.

Для цитирования: Павлова Л.И., Белов А.С. Создание новых